Equivariant ZFA with Choice: a position paper

Murdoch J. Gabbay

MACS, Heriot-Watt University, Edinburgh

Motivation

Nominal techniques assume a set $a, b, c, ... \in \mathbb{A}$ of *atoms*; elements that can be compared for equality but which have few if any other properties. What is a mathematical foundation for this?

Suggestion: Zermelo-Fraenkel Set theory with Choice (ZFC)

Model atoms as $\mathbb{N} = \{0, 1, 2, \dots\}$. For more atoms use $powerset(\mathbb{N})$.

Advantage: Simple.

Disadvantage: Doesn't work. Problem is that atoms should be

infinite, distinguishable, and interchangeable.

This is called **equivariance**.

Numbers are infinite, distinguishable, but not interchangeable

(equivariant).

Suggestion: Fraenkel-Mostowski set theory (FM sets)

Model atoms as a set of atoms $\mathbb{A} = \{a, b, c, \dots\}$. Insist on **finite support** axiom (technical).

Advantage: Beautiful.

Disadvantage: Finite support axiom too strong.

Problem is, we want non-finitely-supported elements. The following are inconsistent with FM:

ightharpoonup "There exists a total ordering on \mathbb{A} ";

"Every set can be well-ordered".

Suggestion: Zermelo-Fraenkel set theory with Atoms and Choice (ZFAC)

Model atoms as a set of atoms $\mathbb{A} = \{a, b, c, \dots\}$. Do not insist on finite support.

Advantage: Also beautiful.

Disadvantage: Equivariance is a scheme of theorems; equivariance for a predicate ϕ costs n to prove, where n is the size of ϕ . Leads to quadratic blowup in mechanised development, and stalled development.

Suggestion: Equivariant ZFAC (EZFAC)

Model atoms as a set of atoms $\mathbb{A} = \{a, b, c, \dots\}$. Do not insist on finite support. Add equivariance as an axiom-scheme (even though it is derivable anyway).

Advantage: Goldilocks: we get Choice, and Equivariance is cheap.

Disadvantage: What disadvantage?

We have Choice and the following are derivable in EZFAC:

 \triangleright "There exists a total ordering on \mathbb{A} ";

"Every set can be well-ordered (even if it mentions atoms)".

FM is trivially a subuniverse of EZFAC, so we can do everything we can do in FM, at nearly zero overhead.

EZFAC axioms

(AtmEmp) $t \in s \Rightarrow s \notin \mathbb{A}$

 $(\mathsf{EmptySet})$ $t \not\in \varnothing$

 $(\mathsf{Ext}) \hspace{1cm} \mathsf{s},\mathsf{s}'\not\in\mathbb{A}\Rightarrow (\forall \mathsf{b}.(\mathsf{b}\in\mathsf{s}\Leftrightarrow\mathsf{b}\in\mathsf{s}'))\Rightarrow\mathsf{s}=\mathsf{s}'$

(Pair) $t \in \{s, s'\} \Leftrightarrow (t = s \lor t = s')$ (Union) $t \in \{s, s'\} \Leftrightarrow \exists a. (t \in a \land a \in s)$

(**Pow**) $t \in pset(s) \Leftrightarrow t \subseteq s$

(Ind) $(\forall a.(\forall b \in a.\phi[a:=b]) \Rightarrow \phi) \Rightarrow \forall a.\phi fv(\phi) = \{a\}$

(Inf) $\exists c.\emptyset \in c \land \forall a.a \in c \Rightarrow a \cup \{a\} \in c$

(AtmInf) $\neg (\mathbb{A} \subseteq_{fin} \mathbb{A})$

(Replace) $\exists b. \forall a. a \in b \Leftrightarrow \exists a'. a' \in u \land a = F(a')$

(Choice) $\varnothing \neq (pset^*(s) \rightarrow s)$ $pset^*$ nonempty powerset

(**Equivar**) $\forall a \in Perm.(\phi \Leftrightarrow a \cdot \cdot \phi)$

The permutation action

A **permutation** π is a bijection on atoms \mathbb{A} .

Define an inductive **permutation action** $\pi \cdot x$ by:

- $ightharpoonup \pi \cdot a = \pi(a)$ if $a \in \mathbb{A}$ and
- $\mathbf{b} \cdot \pi \cdot \mathbf{a} = \{ \pi \cdot \mathbf{b} \mid \mathbf{b} \in \mathbf{a} \} \text{ if } \mathbf{a} \notin \mathbb{A}.$

Examples, where $a, b \in \mathbb{A}$:

 $\pi \cdot \{a,b\} = \{\pi(a), \pi(b)\}\ \pi \cdot \mathbb{A} = \mathbb{A}\ \pi \cdot (\mathbb{A} \setminus \{a,b\}) = \mathbb{A} \setminus \{\pi(a), \pi(b)\}.$

Equivariance (Equivar)

 $\pi \cdot \cdot \phi$ is ϕ with every free variable a replaced with $\pi \cdot \cdot$ a. Examples:

- $\rightarrow \pi \cdot (a \in b) = \pi \cdot a \in \pi \cdot b.$
- $ightharpoonup \pi \cdot (a \in pset^*(a)) = \pi \cdot a \in pset^*(\pi \cdot a).$
- ► (a b)··(a = b) = (b = a), where (a b) is the **swapping** permutation, transposing a and b.

Biinterpretability

ZFC, ZFAC, FM, and EZFAC are biinterpretable: any model of one can be embedded in a model of another; anything we express in one theory can be translated easily to an assertion in another. However, 'biinterpretable' does not mean 'the same'. Roman numerals are biinterpretable with arabic numerals; C is biinterpretable with ML; but they make things easier or harder in different ways, and powerfully affect how we think.

Conclusion

- ► FM is mathematically too strong,
- ZFC is too weak, and
- ZFAC does not scale (quadratic slowdown).

EZFAC may be a suitable foundation for formalising nominal arguments: as the logic underlying a theorem-prover, or as a foundation for the reader's next paper.

To Learn More, See...

Murdoch Gabbay *Equivariant ZFA and the foundations of nominal techniques*. Submitted. arXiv preprint arxiv.org/abs/1801.09443.

Acknowledgement

Thanks to Yue Li for the poster template.

gabbay.org.uk 13 April 2018